Cuttings Bed Height Prediction in Microhole Horizontal Wells with Artificial Intelligence Models
Author:
Han Yaotu,Zhang Xiaocheng,Xu Zhengming,Song Xianzhi,Zhao Weijie,Zhang Qilong
Abstract
Inadequate drill cuttings removal can cause costly problems such as excessive drag, lower rate of penetration, and even mechanical pipe sticking. Cuttings bed height is usually used to evaluate hole-cleaning efficiency in horizontal wells. In this study, artificial intelligence models, including artificial neural network (ANN), support vector regression (SVR), recurrent neural network (RNN), and long short-term memory (LSTM), were employed to predict cuttings bed height in the well-bore. A total of 136 different tests were conducted, and cuttings bed height under different conditions were measured in our previous study. By training four different artificial intelligence models with the experiment data, it was found that the ANN model performed best among other artificial intelligence models. The ANN model outperformed the dimensionless cuttings bed height model proposed in our previous study. Due to the amount of data points, the memory ability of RNN and LSTM models has not been entirely played compared with the ANN model.
Funder
National Natural Science Foundation of China
National Key Research and Development Program
Fundamental Research Funds for the Central Universities
Foundation of State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献