Efficiency Improvement of Magnetic Coupler with Nanocrystalline Alloy Film for UAV Wireless Charging System with a Carbon Fiber Fuselage

Author:

Yang Fengshuo,Jiang JinhaiORCID,Sun ChuanyuORCID,He AinaORCID,Chen Wanqi,Lan Yu,Song KaiORCID

Abstract

Existing research on the magnetic coupler of unmanned aerial vehicle (UAV) wireless charging systems usually ignores the UAV fuselage, but the fuselage causes eddy current loss and reduces a system’s efficiency. Therefore, aiming at the above problems, this paper proposes a design for a magnetic coupler using nanocrystalline cores to reduce the loss caused by the UAV fuselage. First, the parameters of the asymmetric circular coils were designed for higher mutual inductance. The losses caused by the windings and cores were also calculated. Second, for the loss effect of the carbon fiber fuselage, the fuselage was modeled as an additional coil coupled with both the transmitting and receiving coils. The fact that the eddy current induced by the fuselage leads to efficiency reduction is revealed, which has been generally ignored by previous research. Then, the effect of the nanocrystalline alloy was analyzed based on the magnetic circuit model. An optimized nanocrystalline alloy film was applied to reduce eddy current loss and improve coupler efficiency. Finally, an experimental prototype with a 500 W output, 90.3% efficiency, and a 300 mm air gap were fabricated. When compared to the design without UAV material considerations, the coupler efficiency was improved by 7.9%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3