Research on Flexible Virtual Inertia Control Method Based on the Small Signal Model of DC Microgrid

Author:

Lu Shengyang,Yu Tongwei,Liu Huiwen,Zhang Wuyang,Sui Yuqiu,Yang Junyou,Zhang Li,Zhou Jiaxu,Wang HaixinORCID

Abstract

Renewable energy is usually connected to the DC micro-grid by a large number of power electronic devices, which have the advantages of a fast system response, but the disadvantage to reduce the inertia of the system, which makes the stability of the system worse. It is necessary to increase the inertia of DC micro-grid so that it can recover and stabilize well when it receives a disturbance. In this paper, a small-signal model of DC micro-grid with constant power load (CPL) is established, and a flexible virtual inertial (FVI) control method based on DC bus voltage real-time variation is proposed, by controlling the DC/DC converter of the energy storage system, the problem of system oscillation caused by introducing voltage differential link to the system is solved. Compared with the droop control method, the FVI control method can increase the inertia of DC micro-grid system, reduce the influence of small disturbances, and improve the stability of the system. Finally, the validity of the FVI control method based on small signal model is verified in dSPACE.

Funder

Science and Technology Project of State Grid Liaoning Electric Power Co., Ltd.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3