Double-Layer Detection Model of Malicious PDF Documents Based on Entropy Method with Multiple Features

Author:

Song Enzhou1,Hu Tao1,Yi Peng1,Wang Wenbo1

Affiliation:

1. Information Technology Institute, Information Engineering University, Zhengzhou 450001, China

Abstract

Traditional PDF document detection technology usually builds a rule or feature library for specific vulnerabilities and therefore is only fit for single detection targets and lacks anti-detection ability. To address these shortcomings, we build a double-layer detection model for malicious PDF documents based on an entropy method with multiple features. First, we address the single detection target problem with the fusion of 222 multiple features, including 130 basic features (such as objects, structure, content stream, metadata, etc.) and 82 dangerous features (such as suspicious and encoding function, etc.), which can effectively resist obfuscation and encryption. Second, we generate the best set of features (a total of 153) by creatively applying an entropy method based on RReliefF and MIC (EMBORAM) to PDF samples with 37 typical document vulnerabilities, which can effectively resist anti-detection methods, such as filling data and imitation attacks. Finally, we build a double-layer processing framework to detect samples efficiently through the AdaBoost-optimized random forest algorithm and the robustness-optimized support vector machine algorithm. Compared to the traditional static detection method, this model performs better for various evaluation criteria. The average time of document detection is 1.3 ms, while the accuracy rate reaches 95.9%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Malicious Documents Detection and Classification Using Hybrid Boosted-Support Vector Machine with High Dimensional Features;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3