Quantum Adversarial Transfer Learning

Author:

Wang Longhan1,Sun Yifan1ORCID,Zhang Xiangdong1

Affiliation:

1. Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China

Abstract

Adversarial transfer learning is a machine learning method that employs an adversarial training process to learn the datasets of different domains. Recently, this method has attracted attention because it can efficiently decouple the requirements of tasks from insufficient target data. In this study, we introduce the notion of quantum adversarial transfer learning, where data are completely encoded by quantum states. A measurement-based judgment of the data label and a quantum subroutine to compute the gradients are discussed in detail. We also prove that our proposal has an exponential advantage over its classical counterparts in terms of computing resources such as the gate number of the circuits and the size of the storage required for the generated data. Finally, numerical experiments demonstrate that our model can be successfully trained, achieving high accuracy on certain datasets.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference68 articles.

1. Bishop, C.M. (2016). Pattern Recognition and Machine Learning, Springer.

2. Machine learning: Trends, perspectives, and prospects;Jordan;Science,2015

3. Yang, Q., Zhang, Y., Dai, W., and Pan, S.J. (2020). Transfer Learning, Cambridge University Press. [1st ed.].

4. Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019, January 2–7). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the NAACL-HLT, Minneapolis, MN, USA.

5. Tai, L., Paolo, G., and Liu, M. (2017, January 1–24). Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation. Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, BC, Canada.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3