Solving the SSVEP Paradigm Using the Nonlinear Canonical Correlation Analysis Approach

Author:

De la Cruz-Guevara Danni RodrigoORCID,Alfonso-Morales WilfredoORCID,Caicedo-Bravo EduardoORCID

Abstract

This paper presents the implementation of nonlinear canonical correlation analysis (NLCCA) approach to detect steady-state visual evoked potentials (SSVEP) quickly. The need for the fast recognition of proper stimulus to help end an SSVEP task in a BCI system is justified due to the flickering external stimulus exposure that causes users to start to feel fatigued. Measuring the accuracy and exposure time can be carried out through the information transfer rate—ITR, which is defined as a relationship between the precision, the number of stimuli, and the required time to obtain a result. NLCCA performance was evaluated by comparing it with two other approaches—the well-known canonical correlation analysis (CCA) and the least absolute reduction and selection operator (LASSO), both commonly used to solve the SSVEP paradigm. First, the best average ITR value was found from a dataset comprising ten healthy users with an average age of 28, where an exposure time of one second was obtained. In addition, the time sliding window responses were observed immediately after and around 200 ms after the flickering exposure to obtain the phase effects through the coefficient of variation (CV), where NLCCA obtained the lowest value. Finally, in order to obtain statistical significance to demonstrate that all approaches differ, the accuracy and ITR from the time sliding window responses was compared using a statistical analysis of variance per approach to identify differences between them using Tukey’s test.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3