A Lightweight Monocular 3D Face Reconstruction Method Based on Improved 3D Morphing Models

Author:

You Xingyi12ORCID,Wang Yue12ORCID,Zhao Xiaohu12ORCID

Affiliation:

1. National and Local Joint Engineering Laboratory of Internet Applied Technology on Mines, China University of Mining and Technology, Xuzhou 221008, China

2. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221008, China

Abstract

In the past few years, 3D Morphing Model (3DMM)-based methods have achieved remarkable results in single-image 3D face reconstruction. However, high-fidelity 3D face texture generation has been successfully achieved with this method, which mostly uses the power of deep convolutional neural networks during the parameter fitting process, which leads to an increase in the number of network layers and computational burden of the network model and reduces the computational speed. Currently, existing methods increase computational speed by using lightweight networks for parameter fitting, but at the expense of reconstruction accuracy. In order to solve the above problems, we improved the 3D deformation model and proposed an efficient and lightweight network model: Mobile-FaceRNet. First, we combine depthwise separable convolution and multi-scale representation methods to fit the parameters of a 3D deformable model (3DMM); then, we introduce a residual attention module during network training to enhance the network’s attention to important features, guaranteeing high-fidelity facial texture reconstruction quality; and, finally, a new perceptual loss function is designed to better address smoothness and image similarity for the smoothing constraints. Experimental results show that the method proposed in this paper can not only achieve high-precision reconstruction under the premise of lightweight, but it is also more robust to influences such as attitude and occlusion.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Research on 3D Face Reconstruction Methods;Proceedings of the 2024 9th International Conference on Intelligent Information Technology;2024-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3