Hydrogen-Induced Microstructure Changes in Zr/Nb Nanoscale Multilayer Structures

Author:

Laptev Roman1ORCID,Stepanova Ekaterina1ORCID,Lomygin Anton1ORCID,Krotkevich Dmitriy1ORCID,Sidorin Alexey2,Orlov Oleg2ORCID

Affiliation:

1. Division for Experimental Physics, National Research Tomsk Polytechnic University, Tomsk 634050, Russia

2. Dzhelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna 141980, Russia

Abstract

Zr/Nb nanoscale multilayer coatings (NMCs) were studied after hydrogenation in a gaseous environment at 400 °C. The hydrogen distribution and content were determined by pressure and hydrogenation time. Increasing the pressure from 0.2 to 2 MPa resulted in different hydrogen distribution within the Zr/Nb NMCs, while the concentration remained constant at 0.0150 ± 0.0015 wt. %. The hydrogen concentration increased from 0.0165 ± 0.001 to 0.0370 ± 0.0015 wt. % when the hydrogenation time was extended from 1 to 7 h. The δ-ZrH hydride phase was formed in the Zr layers with Zr crystals reorienting towards the [100] direction. The Nb(110) diffraction reflex shifted towards smaller angles and the interplanar distance in the niobium layers increased, indicating significant lateral compressive stresses. Despite an increase in pressure, the nanohardness and Young’s modulus of the Zr/Nb NMCs remained stable. Increasing the hydrogen concentration to 0.0370 ± 0.0015 wt. % resulted in a 40% increase in nanohardness. At this concentration, the relative values of the Doppler broadening variable energy positron annihilation spectroscopy (S/S0) increased above the initial level, indicating an increase in excess free volume due to hydrogen-induced defects and changes. However, the predominant positron capture center remained intact. The Zr/Nb NMCs with hydrogen content ranging from 0.0150 ± 0.0015 to 0.0180 ± 0.001 wt. % exhibited a decrease in the free volume probed by positrons, as demonstrated by the Doppler broadening variable energy positron annihilation spectroscopy. This was evidenced by opposite changes in S and W (S↓W↑). The microstructural changes are attributed to defect annihilation during hydrogen accumulation near interfaces with the formation of hydrogen–vacancy clusters and hydrides.

Funder

Russian Science Foundation

Publisher

MDPI AG

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3