The Effect of a Coating Sprayed Using Supersonic Flame Coating Technology on the Mechanical Properties and Interface Structure of a Thick Steel/Aluminum Composite Plate during Hot Rolling

Author:

Yan Meng12,Wang Meng-Ye13,Cui Zi-Yi13,Xu Jiu-Ba13,Huang Hua-Gui13

Affiliation:

1. School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China

2. Hebei Innovation Center for Equipment Lightweight Design and Manufacturing, Yanshan University, Qinhuangdao 066004, China

3. National Engineering Research Center for Equipment and Technology of Cold Rolled Strip, Yanshan University, Qinhuangdao 066004, China

Abstract

Given the characteristics of a thick steel/aluminum composite plate, such as its large thickness and the significant differences between its components, it is difficult to prepare using direct rolling. Instead, a thick steel/coating/aluminum composite plate may be successfully prepared by combining supersonic flame coating technology with a hot rolling composite process. In this study, the interface shear strength test, SEM, EDS, and other detection methods were applied to investigate the effects of the reduction rate and coating thickness on the interface structure and mechanical properties. The results show that under the condition of single-pass direct rolling, the micro-interface of steel/aluminum is improved with an increase in the reduction rate, but the bonding strength of the interface remains poor. After adding the coating, the thickness of the diffusion layer and the shear strength increase significantly. When the coating thickness is reduced to 0.1 mm, the deformation coordination and shear strength of the composite plate are further enhanced under the combined action of mechanical interlocking and metallurgical bonding. The tensile shear fracture is mainly located at the steel/coating interface. The interfacial shear strength reaches 66 MPa, which exceeds the requirements of the US military standard MIL-J-24445A (SH) for steel/aluminum shear strength. The research results thus support the use of this new method for the simple and efficient production of thick steel/aluminum composite plates.

Funder

National Natural Science Foundation of China Youth Fund

Science and Technology Project of Hebei Education Departmen

Natural Science Foundation of Hebei Province Youth Science Fund Project

Central guidance for local scientific and technological development funding projects

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3