The Effect of Stearic Acid on Microstructure and Properties of (Ti2AlC + Al2O3)p/TiAl Composites

Author:

Zhu Jiawei1,Yuan Meini1,Pei Xin2,Zhou Xiaosheng3,Li Maohua4

Affiliation:

1. The School of Aerospace Engineering, North University of China, Taiyuan 030051, China

2. The School of Mechanical and Electrical Engineering, North University of China, Taiyuan 030051, China

3. The School of Mechanical Engineering, North University of China, Taiyuan 030051, China

4. The School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

Abstract

A new type of multiphase nanoparticle-reinforced TiAl matrix composites ((Ti2AlC + Al2O3)p/TiAl composites) was successfully prepared by vacuum hot-pressing sintering using Ti powder and Al powder, which were ball-milled with different contents of stearic acid (CH3(CH2)16COOH). The component, microstructure, reaction mechanism, and mechanical properties were studied. The results indicated that the composites prepared by adding stearic acid as a process control agent during the ball-milling process not only contained γ-TiAl and α2-Ti3Al phases but also Ti2AlC and Al2O3 phases. The results of SEM and TEM showed that the composites were composed of equiaxed TiAl and Ti3Al grains, and the Ti2AlC and Al2O3 particles were mainly distributed along the TiAl grain boundary in chain form, which can effectively reduce the TiAl grain size. Through the room-temperature compression test, the maximum compression stress was significantly improved in those composites that added the stearic acid, due to the reinforcement particles. The maximum compression stress was 1590 MPa with a 24.3% fracture strain. In addition, the generated crack deflection and Ti2AlC and Al2O3 particles could also enhance the toughness of the TiAl alloy. (Ti2AlC + Al2O3)p/TiAl composites generated by adding stearic acid played a key role in improving the mechanical properties of the TiAl matrix.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province

Specialized Research Fund for the Doctoral Program of Higher Education

National Key Research and Development Plan of China

Science and Technology Committee of the Military Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3