Comprehensive Unveiling of the Oxidation Resistance and Corrosion Protection of an Oxide Layer Formed on the Gd-Alloyed AZ80 Alloy Surface

Author:

Cheng Chunlong12,Zhou Gaolin1,Qu Bo1,Wang Liang2,Malik Abdul1,Chen Zheng1

Affiliation:

1. School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China

2. School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

In our previous work, the effect of Gd alloying on the oxidation resistance of AZ80 alloy was revealed briefly. However, a comprehensive understanding of the oxidation and corrosion resistance of the oxide layer formed on the Gd alloying AZ80 alloy surface needs to be developed. Thus, in this research, the high-temperature oxidation behaviors, oxidation products, and oxide layer characteristics of AZ80, AZ80-0.47Gd, and AZ80-0.75Gd (wt%) alloys were investigated at 420 °C. The corrosion protection of the oxide layer formed on the alloy surface was evaluated. The results showed that Gd alloying eliminated the content of the low melting point phase of β-Mg17Al12 and promoted the generation of a high melting point phase of Al2Gd. Gd2O3 appeared in the oxide layer and facilitated the propagation of homogeneous oxidation as well as densification of the oxide layer. In addition, the firm oxide layer showed characteristics of a blurred boundary with the magnesium matrix. After immersion of the oxide layer containing gadolinium oxide, the products of corrosion were massively nodulated, leading to the passivation of corrosion. This research provides new ideas for magnesium alloy protective layer preparation via a high-temperature oxidation technique.

Funder

Fundamental Research Funds for the Central Universities

Material Science and Engineering Discipline Guidance Fund of China University of Mining and Technology

China Postdoctoral Science Foundation

the Natural Science Foundation of Jiangsu Province

the Jiangsu Funding Program for Excellent Postdoctoral Talent

the Open Sharing Fund for the Large-scale Instruments and Equipment of China University of Mining and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3