Study on the Effect of Solid Solution Treatment on the Bending Fatigue Property of Fe-Mn-Si Shape Memory Alloys

Author:

Niu Haojie1,Sun Yubin1,Lin Chengxin1

Affiliation:

1. Department of Mechanics, Dalian Maritime University, Dalian 116026, China

Abstract

Fe-Mn-Si shape memory alloys have excellent low-cycle fatigue performance and broad application prospects in the field of civil engineering and construction. It is necessary to conduct comprehensive and in-depth research on the mechanical properties of Fe-Mn-Si shape memory alloys. This study takes the Fe17Mn5Si10Cr5Ni shape memory alloy as the research object. After solid solution treatment at different temperatures and times, the effect of solid solution treatment on the bending fatigue performance of Fe-Mn-Si shape memory alloys was studied using bending cycle tests. The phase composition and fracture morphology of the sample were analyzed. The results showed that solid solution treatment can significantly improve the bending fatigue performance of Fe-Mn-Si shape memory alloys, reaching the optimal value at 850 °C for 1 h. The number of bending cycles until fracture increased by 131% compared to untreated specimens. Stress induction γ → ε martensitic transformation occurred in Fe-Mn-Si shape memory alloy specimens during bending cyclic testing, which is reversible. The fracture area of Fe-Mn-Si shape memory alloy specimens is mainly characterized by ductile fracture, with some areas exhibiting quasi-quasi-cleavage fracture characteristics.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3