Numerical Simulation of Temperature Evolution, Solid Phase Transformation, and Residual Stress Distribution during Multi-Pass Welding Process of EH36 Marine Steel

Author:

Wen Pengyu123ORCID,Wang Jiaji2,Jiao Zhenbo12,Fu Kuijun2,Li Lili12,Guo Jing12ORCID

Affiliation:

1. School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China

2. State Key Laboratory of Metal Material for Marine Equipment and Application, Anshan 114009, China

3. Key Laboratory for Advanced Materials of Ministry of Education, School of Materials Science Engineering, Tsinghua University, Beijing 100083, China

Abstract

An investigation into the evolution of temperature and stress fields, as well as the phase transformation in marine steel EH36 during multi-pass welding, and their subsequent effects on Charpy impact toughness, remains in great lack. In this study, submerged arc welding (SAW) was employed to carry out multi-pass welding on EH36 steel plates, followed by the low-temperature toughness test of weldments. Comsol software version 6.2 and finite element analysis are utilized to simulate the evolution of the microstructure, temperature, and residual stress fields throughout the multi-pass welding process. As welding progressed, the heat absorption along the vertical direction was enhanced; in contrast, a decrease is observed in the horizontal direction away from the heat source. This complicated temperature history favors the bainite transformation in the vicinity to the heat source, whereas areas more remote from the weld zone exhibit a higher prevalence of acicular ferrite due to the reduced cooling rate. The concentration of residual stress is predicted to occur at the boundary of the melt pool and at the interface between the weld and the heat-affected zone, with the greatest deformation observed near the fusion line at the top surface of the model. Furthermore, multi-pass welding may alleviate the residual stress, especially when coupled with the formation of acicular ferrite upon cooling, leading to improved low-temperature impact toughness in regions remote from the heat source. These findings offer valuable insights for the design and optimization of multi-pass welding in future applications.

Funder

National Natural Science Foundation of China

State Key Laboratory Foundation of University of Science and Technology of Liaoning-Ansteel

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3