High-Entropy Alloy Al0.2Co1.5CrFeNi1.5Ti0.5 Prepared from High-Entropy Oxide (Al0.2Co1.5CrFeNi1.5Ti0.5)3O4 by a Deoxidation Process via a CaH2-Assisted Molten Salt Method

Author:

Kobayashi Yasukazu1ORCID,Yokoyama Shota2,Shoji Ryo2ORCID

Affiliation:

1. Renewable Energy Research Centre, National Institute of Advanced Industrial Science and Technology, 2-2-9 Machiikedai, Koriyama 963-0298, Japan

2. Department of Chemical Science and Engineering, National Institute of Technology, Tokyo College, 1220-2 Kunugida, Hachioji 193-0997, Japan

Abstract

High-entropy alloys (HEAs) have attracted a great deal of research interest these days because of their attractive properties. Low-temperature chemical synthesis methods are being developed to obtain nanoscale HEAs with low energy consumption. In this study, we prepared HEA Al0.2Co1.5CrFeNi1.5Ti0.5 nanoparticles from high-entropy oxide (HEO) (Al0.2Co1.5CrFeNi1.5Ti0.5)3O4 by a deoxidation process via a CaH2-assisted molten salt method at 600 °C. X-ray diffraction measurements demonstrated that the oxide precursor and the reduced product have single-phases of spinel structure and face-centered cubic structures, indicating the formation of HEO and HEA, respectively. The HEA nanoparticles exhibited superior catalytic performance in the liquid-phase hydrogenation of p-nitrophenol at room temperature with little leaching of the component elements. Scanning electron microscopy (SEM) with energy-dispersive X-ray spectrometry (EDX) exhibited a good distribution of constituent elements over the HEA nanoparticles in a micro-sized range. However, transmission electron microscopy (TEM) with EDX revealed a slight deviation of elemental distributions of Al and Ti from those of Co, Cr, Fe, and Ni in a nano-sized range, probably due to the incomplete reduction of aluminum and titanium oxides. The elemental homogeneity in the HEA nanoparticles could be improved by taking advantage of the HEO precursor with homogeneous elemental distributions, but the experimental results suggested the importance of the total reduction of oxide precursors to prepare homogeneous HEAs from HEOs.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3