Electromagnetic Spectrum Allocation Method for Multi-Service Irregular Frequency-Using Devices in the Space–Air–Ground Integrated Network

Author:

Meng YongchaoORCID,Qi Peihan,Lei Qian,Zhang Zhengyu,Ren Jinyang,Zhou Xiaoyu

Abstract

The management and allocation of electromagnetic spectrum resources is the inner driving force of the construction of the space–air–ground integrated network. Existing spectrum allocation methods are difficult to adapt to the scenario where the working bandwidth of multi-service frequency-using devices is irregular and the working priorities are different. In this paper, an orthogonal genetic algorithm based on the idea of mixed niches is proposed to transform the problem of frequency allocation into the optimization problem of minimizing the electromagnetic interference between frequency-using devices in the integrated network. At the same time, a system model is constructed that takes the minimum interference effect of low-priority-to-high-priority devices as the objective function and takes the protection frequency and natural frequency as the constraint conditions. In this paper, we not only introduce the thought of niches to improve the diversity of the population but also use an orthogonal uniform crossover operator to improve the search efficiency. At the same time, we use a standard genetic algorithm and a micro genetic algorithm to optimize the model. The global searchability and local search precision of the proposed algorithm are all improved. Simulation results show that compared with the existing methods, the proposed algorithm has the advantages of fast convergence, strong stability and good optimization effect.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3