IRS-Enabled Ultra-Low-Power Wireless Sensor Networks: Scheduling and Transmission Schemes

Author:

Alwazani HibatallahORCID,Chaaban AnasORCID

Abstract

Passive technologies, including intelligent reflecting surfaces (IRS), are gaining traction thanks to their ability to enhance communication systems while maintaining minimal cost and low complexity. They can assist a wireless sensor network (WSN) by achieving low power requirements for sensors and aid communication needs in many applications, for instance, environmental monitoring. In this paper, we propose an IRS-equipped WSN which describes sensors equipped with IRSs instead of active radio frequency (RF) electronics. The IRS sensor node (ISN) intercepts a dedicated signal from a power source such as a base station (BS) and modulates the transmission of that signal to an intended recipient. In order to enable multiple sensors to transmit to the receiver, we study opportunistic scheduling (OS) utilizing multi-sensor diversity while considering blind IRS operation, and compare it with round-robin (RR), proportional fairness (PF), and a theoretical upper bound. We study the effect of the choice of the number of IRS elements N and number of ISNs L on the average throughput of the system under OS. Finally, we provide pertinent comparisons for the different scheduling schemes and IRS configurations under relevant system performance metrics, highlighting different scenarios in which each scheme performs better.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3