Abstract
Textile pilling causes an undesirable appearance on the surface of garments, which is a long-standing problem. In this study, textile grading of fleece based on pilling assessment was performed using image processing and machine learning methods. Two image processing methods were used. The first method involved using the discrete Fourier transform combined with Gaussian filtering, and the second method involved using the Daubechies wavelet. Furthermore, binarization was used to segment the textile pilling from the background. Morphological and topological image processing methods were applied to extract the essential characteristics of textile image information to establish a database for the textile. Finally, machine learning methods, namely the artificial neural network (ANN) and the support vector machine (SVM), were used to objectively solve the textile grading problem. When the Fourier-Gaussian method was used, the classification accuracies of the ANN and SVM were 96.6% and 95.3%, and the overall accuracies of the Daubechies wavelet were 96.3% and 90.9%, respectively.
Funder
Ministry of Science and Technology, Taiwan
Subject
Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献