Affiliation:
1. Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
Abstract
With the rapid development of computer vision, vision cameras have been used as noncontact sensors for structural displacement measurements. However, vision-based techniques are limited to short-term displacement measurements because of their degraded performance under varying illumination and inability to operate at night. To overcome these limitations, this study developed a continuous structural displacement estimation technique by combining measurements from an accelerometer with vision and infrared (IR) cameras collocated at the displacement estimation point of a target structure. The proposed technique enables continuous displacement estimation for both day and night, automatic optimization of the temperature range of an infrared camera to ensure a region of interest (ROI) with good matching features, and adaptive updating of the reference frame to achieve robust illumination–displacement estimation from vision/IR measurements. The performance of the proposed method was verified through lab-scale tests on a single-story building model. The displacements were estimated with a root-mean-square error of less than 2 mm compared with the laser-based ground truth. In addition, the applicability of the IR camera for displacement estimation under field conditions was validated using a pedestrian bridge test. The proposed technique eliminates the need for a stationary sensor installation location by the on-site installation of sensors and is therefore attractive for long-term continuous monitoring. However, it only estimates displacement at the sensor installation location, and cannot simultaneously estimate multi-point displacements which can be achieved by installing cameras off-site.
Funder
National Research Foundation of Korea (NRF) grants funded by the Korean government
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献