Development of a Machine Learning-Based Model to Predict Timed-Up-and-Go Test in Older Adults

Author:

Kraus Moritz1ORCID,Stumpf Ulla Cordula1,Keppler Alexander Martin1ORCID,Neuerburg Carl1ORCID,Böcker Wolfgang1,Wackerhage Henning2ORCID,Baumbach Sebastian Felix1ORCID,Saller Maximilian Michael1ORCID

Affiliation:

1. Department of Orthopedics and Trauma Surgery, Musculoskeletal University Center Munich, University Hospital of Ludwig-Maximilians-University (LMU), 81377 Munich, Germany

2. Faculty of Sport and Health Sciences, Technical University of Munich, 80809 Munich, Germany

Abstract

Introduction: The measurement of physical frailty in elderly patients with orthopedic impairments remains a challenge due to its subjectivity, unreliability, time-consuming nature, and limited applicability to uninjured individuals. Our study aims to address this gap by developing objective, multifactorial machine models that do not rely on mobility data and subsequently validating their predictive capacity concerning the Timed-up-and-Go test (TUG test) in orthogeriatric patients. Methods: We utilized 67 multifactorial non-mobility parameters in a pre-processing phase, employing six feature selection algorithms. Subsequently, these parameters were used to train four distinct machine learning algorithms, including a generalized linear model, a support vector machine, a random forest algorithm, and an extreme gradient boost algorithm. The primary goal was to predict the time required for the TUG test without relying on mobility data. Results: The random forest algorithm yielded the most accurate estimations of the TUG test time. The best-performing algorithm demonstrated a mean absolute error of 2.7 s, while the worst-performing algorithm exhibited an error of 7.8 s. The methodology used for variable selection appeared to exert minimal influence on the overall performance. It is essential to highlight that all the employed algorithms tended to overestimate the time for quick patients and underestimate it for slower patients. Conclusion: Our findings demonstrate the feasibility of predicting the TUG test time using a machine learning model that does not depend on mobility data. This establishes a basis for identifying patients at risk automatically and objectively assessing the physical capacity of currently immobilized patients. Such advancements could significantly contribute to enhancing patient care and treatment planning in orthogeriatric settings.

Publisher

MDPI AG

Subject

Geriatrics and Gerontology,Gerontology,Aging,Health (social science)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feasibility for Clinical Physical Mobility Measurement using Hearing Aid Accelerometers;2024 IEEE Sensors Applications Symposium (SAS);2024-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3