Representing Route Familiarity Using the Abstraction Hierarchy Framework

Author:

Payyanadan Rashmi P.,Lee John D.

Abstract

Familiarity with a route is influenced by levels of dynamic and static knowledge about the route and the route network such as type of roads, infrastructure, traffic conditions, purpose of travel, weather, departure time, etc. To better understand and develop route choice models that can incorporate more meaningful representations of route familiarity, OBDII devices were installed in the vehicles of 32 drivers, 65 years and older, for a period of three months. Personalized web-based trip diaries were used to provide older drivers with post-trip feedback reports about their risky driving behaviors, and collect feedback about their route familiarity, preferences, and reasons for choosing the route driven vs. an alternate low-risk route. Feedback responses were analyzed and mapped onto an abstraction hierarchy framework, which showed that among older drivers, route familiarity depends not only on higher abstraction levels such as trip goals, purpose, and driving strategies, but also on the lower levels of demand on driving skills, and characteristics of road type. Additionally, gender differences were identified at the lower levels of the familiarity abstraction model, especially for driving challenges and the driving environment. Results from the analyses helped highlight the multi-faceted nature of route familiarity, which can be used to build the necessary levels of granularity for modelling and interpretation of spatial and contextual route choice recommendation systems for specific population groups such as older drivers.

Funder

Agency for Healthcare Research and Quality

Publisher

MDPI AG

Subject

Geriatrics and Gerontology,Gerontology,Aging,Health (social science)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3