Thermal Behavior in Glass Houses through the Analysis of Scale Models

Author:

Aguilera-Benito PatriciaORCID,Varela-Lujan Sheila,Piña-Ramirez CarolinaORCID

Abstract

Reducing energy expenditure in the construction sector requires the implementation of passive strategies in buildings. In Spain, consumption is centered on air conditioning systems associated with the demand for the building’s thermal envelope. A critical point of the enclosures is represented by glazed holes where much of the energy that is consumed is lost; however, homes increasingly tend to have large window openings due to the comfort and visual well-being they provide to users. In this study, we focus on an extreme case, analyzing a fully glazed house in its four orientations. It is necessary to evaluate the most energy efficient passive strategy for this type of construction. The results are based on the temperature analysis obtained during the monitoring of two scale models of a glass house. The results indicate that solar control foil glasses perform better in warmer weather stations. Regarding the cantilever installation, it influences the interior temperature and the central hours of the day, mitigating the increase in temperature as well as slowing the nighttime cooling.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3