Comparison between Virgin and Recycled 316L SS and AlSi10Mg Powders Used for Laser Powder Bed Fusion Additive Manufacturing

Author:

Mohd Yusuf ShahirORCID,Choo Edmund,Gao Nong

Abstract

In this study, the comparison of properties between fresh (virgin) and used (recycled) 316L stainless steel (316L SS) and AlSi10Mg powders for the laser powder bed fusion additive manufacturing (L-PBF AM) process has been investigated in detail. Scanning electron microscopy (SEM), electron-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD) techniques are used to determine and evaluate the evolution of morphology, particle size distribution (PSD), circularity, chemical composition, and phase (crystal structure) in the virgin and recycled powders of both materials. The results indicate that both recycled powders increase the average particle sizes and shift the PSD to higher values, compared with their virgin powders. The recycled 316L SS powder particles largely retain their spherical and near-spherical morphologies, whereas more irregularly shaped morphologies are observed for the recycled AlSi10Mg counterpart. The average circularity of recycled 316L SS powder only reduces by ~2%, but decreases ~17% for the recycled AlSi10Mg powder. EDX analysis confirms that both recycled powders retain their alloy-specific chemical compositions, but with increased oxygen content. XRD spectra peak analysis suggests that there are no phase change and no presence of any undesired precipitates in both recycled powders. Based on qualitative comparative analysis between the current results and from various available literature, the reuse of both recycled powders is acceptable up to 30 times, but re-evaluation through physical and chemical characterizations of the powders is advised, if they are to be subjected for further reuse.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3