Abstract
The newly designed ingot-metallurgy nickel-based superalloy SDZhS-15 intended for disc applications at operating temperatures up to 800–850 °C was subjected to homogenization annealing and canned forging at subsolvus temperatures, followed by solid solution treatment and ageing. Mostly a fine-grained recrystallized microstructure was obtained in the forgings. It was revealed that post-forging solid solution treatment at T > (Ts-50), where Ts is the γ′ solvus temperature, led to a significant γ grain growth, which in turn led to a decrease in strength and ductility of the superalloy. The solution treatment at (Ts-60)–(Ts-50) allowed to save fine γ grains (dγ = 10–20 μm) and to provide the formation of secondary γ′ precipitates with a size of around 0.1 μm. In the forged and heat-treated conditions, the superalloy demonstrated superior mechanical properties, particularly excellent creep resistance at 650–850 °C in the stress range of 400–1200 MPa. Microstructure examination of the creep-tested samples showed that a decrease in the creep resistance at 850 °C can be associated with enhanced diffusivity along γ grain and γ/γ′ interphase boundaries leading to formation of cracks along the boundaries. In spite of the heavy alloying, the topologically close-packed phases were not detected in the superalloy, including in the creep tested samples.
Subject
General Materials Science,Metals and Alloys
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献