Effects of Ti6Al4V Surfaces Manufactured through Precision Centrifugal Casting and Modified by Calcium and Phosphorus Ion Implantation on Human Osteoblasts

Author:

Jörg FiedlerORCID,Betül Katmer Amet,Heiner Michels,Gerhard Kappelt,Erwin Brenner Rolf

Abstract

(1) In order to enable a more widespread use of uncemented titanium-based endoprostheses to replace cobalt-containing cemented endoprostheses for joint replacement, it is essential to achieve optimal osseointegrative properties and develop economic fabrication processes while retaining the highest biomedical quality of titanium materials. One approach is the usage of an optimized form of Ti6Al4V-precision casting for manufacturing. Besides the chemical and physical properties, it is necessary to investigate possible biological influences in order to test whether the new manufacturing process is equivalent to conventional methods. (2) Methods: Primary human osteoblasts were seeded on discs, which were produced by a novel Ti6Al4V centrifugal-casting process in comparison with standard machined discs of the same titanium alloy. In a second step, the surfaces were modified by calcium or phosphorus ion beam implantation. In vitro, we analyzed the effects on proliferation, differentiation, and apoptotic processes. (3) Results: SEM analysis of cells seeded on the surfaces showed no obvious differences between the reference material and the cast material with or without ion implantation. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) proliferation assay also did not reveal any significant differences. Additionally, the osteogenic differentiation process tested by quantitative polymerase chain reactions (PCR), Alizarin red S assay, and C-terminal collagen type I propeptide (CICP) Elisa was not significantly modified. No signs of induced apoptosis were observed. (4) Conclusions: In this study, we could show that the newly developed process of centrifugal casting generated a material with comparable surface features to standard machined Ti6Al4V material. In terms of biological impact on primary human osteoblasts, no significant differences were recognized. Additional Ca- or P-ion implantation did not improve or impair these characteristics in the dosages applied. These findings indicate that spin casting of Ti6Al4V may represent an interesting alternative to the production of geometrically complex orthopedic implants.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3