New Forms of Neuroactive Phospholipids for DHA Enrichment in Brain

Author:

Gomes Romina12,Mendes Inês13,Duarte Maria Paula2,Bandarra Narcisa M.14,Gomes-Bispo Ana14ORCID

Affiliation:

1. Division of Aquaculture, Upgrading and Bioprospection (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal

2. MEtRICs/Departamento de Química, NOVA School of Science and Technology|FCTNOVA, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal

3. Barreiro School of Technology, Polytechnic Institute of Setubal, Rua Américo da Silva Marinho, 2839-001 Lavradio, Portugal

4. Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal

Abstract

Low levels of docosahexaenoic acid (DHA) in the brain have been related to neurological disorders, like Alzheimer’s disease (AD). After ingestion, dietary DHA must cross the blood–brain barrier, where it is absorbed as lysophosphatidylcholine (LPC), due to its role as a preferential DHA carrier in the brain. This work aimed at the production of LPC-DHA extracts to be used in supplementation/food fortification intended neural enrichment in DHA. As it is rich in DHA, especially its phospholipids (PL), Atlantic mackerel (Scomber scombrus, caught in Spring/2022) was used as a raw material. The polar lipids fraction was separated and hydrolysed with Rhizomucor miehei lipase, to enzymatically convert phosphatidylcholine (PC) into LPC. The fish (muscle and by-products) lipids fraction was used for total lipids (TL) content, lipid classes (LC) and fatty acid (FA) profile evaluation, whilst polar lipids extracts were studied for LC production and FA analysis. Muscle TL ranged between 1.45 and 4.64 g/100 g (WW), while by-products accounted for 7.56-8.96 g/100 g, with the highest contents being found in March. However, PL were more abundant in muscle (22.46–32.20% of TL). For polar lipids extracts, PL represented 50.79% of TL, among which PC corresponded to 57.76% and phosphatidylethanolamine to 42.24%. After hydrolysis, nearly half of this PC was converted into LPC. When compared to the initial PC, DHA relative content (33.6% of total FA) was significantly higher after hydrolysis: 55.6% in PC and 73.6% in LPC. Such extract, obtained from this undervalued species, may represent a promising strategy to increase DHA uptake into brain cells while allowing this species to upgrade.

Funder

FCT

IPMA

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3