Experimental and Theoretical Study of Radiation Shielding Features of CaO-K2O-Na2O-P2O5 Glass Systems

Author:

Sayyed M. I.ORCID,Albarzan Badriah,Almuqrin Aljawhara H.,El-Khatib Ahmed M.,Kumar Ashok,Tishkevich Daria I.ORCID,Trukhanov Alex V.ORCID,Elsafi MohamedORCID

Abstract

The gamma radiation shielding ability for CaO-K2O-Na2O-P2O5 glasses were experimentally determined between 0.0595 and 1.41 MeV. The experimental MAC results were compared with theoretical results obtained from the XCOM software to test the accuracy of the experimental values. Additionally, the effect of increasing the P2O5 in the glass composition, or reducing the Na2O content, was evaluated at varying energies. For the fabricated glasses, the experimental data strongly agreed with the XCOM results. The effective atomic number (Zeff) of the fabricated glasses was also determined. The Zeff values start out at their maximum (12.41–12.55) at the lowest tested energy, 0.0595 MeV, and decrease to 10.69–10.80 at 0.245 MeV. As energy further increases, the Zeff values remain almost constant between 0.344 and 1.41 MeV. The mean free path (MFP) of the fabricated glasses is investigated and we found that the lowest MFP value occurs at the lowest tested energy, 0.0595 MeV, and lies within the range of 1.382–1.486 cm, while the greatest MFP can be found at the highest tested energy, 1.41 MeV, within the range of 8.121–8.656 cm. At all energies, the KCNP40 sample has the lowest MFP, while the KCNP60 sample has the greatest. The half value layer (HVL) for the KCNP-X glasses is determined. For all the selected energies, the HVL values follow the order of KCNP40 < KCNP45 < KCNP50 < KCNP55 < KCNP60. The HVL of the KCNP50 sample increased from 0.996 to 2.663, 3.392, 4.351, and 5.169 cm for energies of 0.0595, 0.245, 0.444, 0.779, and 1.11 MeV, respectively. The radiation protection efficiency (RPE) results reveal that decreasing the P2O5 content in the glasses improves the radiation shielding ability of the samples. Thus, the KCNP40 sample has the best potential for photon attenuation applications.

Funder

Princess Nourah Bint Abdulrahman University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3