Abstract
Cutting tool wear reduces the quality of the product in production processes. The optimization of both the machining parameters and tool life reliability is an increasing research trend to save manufacturing resources. In the present work, we introduced a computational approach in estimating the tool wear in the turning process using artificial intelligence. Support vector machines (SVM) for regression with Bayesian optimization is used to determine the tool wear based on various machining parameters. A coated insert carbide tool 2025 was utilized in turning tests of 709M40 alloy steel. Experimental data were collected for three machining parameters like feed rate, depth of cut, and cutting speed, while the parameter of tool wear was calculated with a scanning electron microscope (SEM). The SVM model was trained on 162 experimental data points and the trained model was then used to estimate the experimental testing data points to determine the model performance. The proposed SVM model with Bayesian optimization achieved a superior accuracy in estimation of the tool wear with a mean absolute percentage error (MAPE) of 6.13% and root mean square error (RMSE) of 2.29%. The results suggest the feasibility of adopting artificial intelligence methods in estimating the machining parameters to reduce the time and costs of manufacturing processes and contribute toward greater sustainability.
Subject
General Materials Science
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献