A Silver Yarn-Incorporated Song Brocade Fabric with Enhanced Electromagnetic Shielding

Author:

Zhang XiulingORCID,Jin ZiminORCID,Hu Lizhu,Zhou Xinyi,Yang KaiORCID,Kremenakova Dana,Militky JiriORCID

Abstract

The fabrics with electromagnetic interference (EMI) have been used in various fields. However, most studies related to the EMI fabrics focused on the improvement of the final electromagnetic shielding effectiveness (EM SE) by adjusting the preparation parameters while the breathability of the EMI fabrics was affected and the visible surficial patterns on the EMI fabric was limited. In this work, the two samples based on the Song Brocade structure were fabricated with surficial visible pattern ‘卐’. One was fabricated with silver-plated polyamide (Ag-PA) yarns and the silk yarns, the another with polyester (PET) yarns and the silk yarns. The weaving structure of the two samples were investigated by scanning electronic microscopy (SEM) and laser optical microscopy (LOM). The resistance against the EM radiation near field communication (NFC) and the ultraviolet (UV) light was also evaluated. Besides, the surface resistance, the air permeability and the water evaporation rate were investigated. The results revealed that the ‘卐’ appeared successfully on the surface of the two samples with stable weaving structure. The Ag-PA yarn-incorporated Song Brocade fabric had the EMI shielding effectiveness value around 50 dB, which was supported by the low surface resistance less than 40 Ω. The excellent NFC shielding of the Ag-PA yarn-incorporated Song Brocade was also found. The ultraviolet protection factor (UPF) value of the Ag-PA yarn-incorporated Song Brocade fabric was higher than 190. The air permeability and the evaporation rate of the Ag-PA yarn-incorporated Song Brocade fabric was higher than 99 mm/s, and 1.4 g/h, respectively. As a result, the Ag-PA yarn-incorporated Song Brocade fabrics were proposed for both the personal and the industrial scale utilization.

Funder

Ministerstvo Školství, Mládeže a Tělovýchovy

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3