Prediction of Pollutant Concentration Based on Spatial–Temporal Attention, ResNet and ConvLSTM

Author:

Chen Cai12,Qiu Agen2,Chen Haoyu3,Chen Yajun4,Liu Xu1,Li Dong1

Affiliation:

1. School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 102616, China

2. Chinese Academy of Surveying and Mapping, Beijing 100830, China

3. Jiangsu Provincial Surveying and Mapping Engineering Institute, Nanjing 210013, China

4. China Electronics Standardization Institute, Beijing 100007, China

Abstract

Accurate and reliable prediction of air pollutant concentrations is important for rational avoidance of air pollution events and government policy responses. However, due to the mobility and dynamics of pollution sources, meteorological conditions, and transformation processes, pollutant concentration predictions are characterized by great uncertainty and instability, making it difficult for existing prediction models to effectively extract spatial and temporal correlations. In this paper, a powerful pollutant prediction model (STA-ResConvLSTM) is proposed to achieve accurate prediction of pollutant concentrations. The model consists of a deep learning network model based on a residual neural network (ResNet), a spatial–temporal attention mechanism, and a convolutional long short-term memory neural network (ConvLSTM). The spatial–temporal attention mechanism is embedded in each residual unit of the ResNet to form a new residual neural network with the spatial–temporal attention mechanism (STA-ResNet). Deep extraction of spatial–temporal distribution features of pollutant concentrations and meteorological data from several cities is carried out using STA-ResNet. Its output is used as an input to the ConvLSTM, which is further analyzed to extract preliminary spatial–temporal distribution features extracted from the STA-ResNet. The model realizes the spatial–temporal correlation of the extracted feature sequences to accurately predict pollutant concentrations in the future. In addition, experimental studies on urban agglomerations around Long Beijing show that the prediction model outperforms various popular baseline models in terms of accuracy and stability. For the single-step prediction task, the proposed pollutant concentration prediction model performs well, exhibiting a root-mean-square error (RMSE) of 9.82. Furthermore, even for the pollutant prediction task of 1 to 48 h, we performed a multi-step prediction and achieved a satisfactory performance, being able to achieve an average RMSE value of 13.49.

Funder

State Key Laboratory of Geo-Information Engineering

Chinese Academy of Surveying and Mapping Basic Research Fund Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3