Electric Vehicle NiMH Battery State of Charge Estimation Using Artificial Neural Networks of Backpropagation and Radial Basis

Author:

Hernández Jordy Alexander1ORCID,Fernández Efrén2ORCID,Torres Hugo2

Affiliation:

1. Energy and Climate Change Research Group, School of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, NL, Mexico

2. ERGON Research Center, Postgraduate Department, University of Azuay, Cuenca 010107, Ecuador

Abstract

The state of charge of a battery depends on many magnitudes, but only voltage and intensity are included in mathematical equations because other variables are complex to integrate into. The contribution of this work was to obtain a model to determine the state of charge with these complex variables. This method was developed considering four models, the multilayer feed-forward backpropagation models of two and three input variables used supervised training, with the variable-learning-rate backpropagation training function, five and seven neurons in the hidden layer, respectively, achieving an optimal training. Meanwhile, the radial basis neural network models of two and three input variables were trained with the hybrid method, the propagation constant with a value of 1 and 80 neurons in the hidden layer. As a result, the radial basis neural network with the variable-learning-rate training function, considering the discharge temperature, was the one with the best performance, with a correlation coefficient of 0.99182 and a confidence interval of 95% (0.98849; 0.99516). It is then concluded that artificial neural networks have high performance when modeling nonlinear systems, whose parameters are difficult to measure with time variation, so estimating them in formulas where they are omitted is no longer necessary, which means an accurate SOC.

Publisher

MDPI AG

Subject

Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3