Tuning Window Size to Improve the Accuracy of Battery State-of-Charge Estimations Due to Battery Cycle Addition

Author:

Anggraeni Dewi1,Sudiarto Budi1,Fitrianingsih Ery2ORCID,Priambodo Purnomo Sidi1ORCID

Affiliation:

1. Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia

2. Research Center for Satellite Technology, National Research and Innovation Agency, Bogor 16310, Indonesia

Abstract

The primary indicator of battery level in a battery management system (BMS) is the state of charge, which plays a crucial role in enhancing safety in terms of energy transfer. Accurate measurement of SoC is essential to guaranteeing battery safety, avoiding hazardous scenarios, and enhancing the performance of the battery. To improve SoC accuracy, first-order and second-order adaptive extended Kalman filtering (AEKF) are the best choices, as they have less computational cost and are more robust in uncertain circumstances. The impact on SoC estimation accuracy of increasing the cycle and its interaction with the size of the tuning window was evaluated using both models. The research results show that tuning the window size (M) greatly affects the accuracy of SoC estimation in both methods. M provides a quick response detection measurement and adjusts the estimation’s character with the actual value. The results indicate that the precision of SoC improves as the value of M decreases. In addition, the application of first-order AEKF has practical advantages because it does not require pre-processing steps to determine polarization resistance and polarization capacity, while second-order AEKF has better capabilities in terms of SoC estimation. The robustness of the two techniques was also evaluated by administering various initial SoCs. The examination findings demonstrate that the estimated trajectory can approximate the actual trajectory of the SoC.

Funder

UNIVERSITAS INDONESIA

Publisher

MDPI AG

Subject

Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3