Evaluating the Economic Benefits of a Smart-Community Microgrid with Centralized Electrical Storage and Photovoltaic Systems

Author:

Arkhangelski JuraORCID,Siano PierluigiORCID,Mahamadou Abdou-TankariORCID,Lefebvre Gilles

Abstract

In this paper, an innovative method for managing a smart-community microgrid (SCM) with a centralized electrical storage system (CESS) is proposed. The method consists of day-ahead optimal power flow (DA–OPF) for day-ahead SCM managing and its subsequent evaluation, considering forecast uncertainties. The DA–OPF is based on a data forecast system that uses a deep learning (DL) long short-term memory (LSTM) network. The OPF problem is formulated as a mathematical mixed-integer nonlinear programming (MINLP) model. Following this, the developed DA–OPF strategy was evaluated under possible operations, using a Monte Carlo simulation (MCS). The MCS allowed us to obtain potential deviations of forecasted data during possible day-ahead operations and to evaluate the impact of the data forecast errors on the SCM, and that of unit limitation and the emergence of critical situations. Simulation results on a real existing rural conventional community endowed with a centralized community renewable generation (CCRG) and CESS, confirmed the effectiveness of the proposed operation method. The economic analysis showed significant benefits and an electricity price reduction for the considered community if compared to a conventional distribution system, as well as the easy applicability of the proposed method due to the CESS and the developed operating systems.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3