Abstract
Coal burst is a type of dynamic geological hazard in coal mine. In this study, a modified bursting energy index, which is defined as the ratio of elastic strain energy at the peak strength to the released strain energy density at the post-peak stage, was proposed to evaluate the coal burst proneness. The calculation method for this index was also introduced. Two coal mines (PJ and TJH coal mines) located in Ordos coalfield were used to verify the validity of the proposed method. The tests results indicate that modified bursting energy index increases linearly with increasing uniaxial compressive strength. The parameter A, which is used to fit relation between total input and elastic strain energy density, has a significant effect on the modified bursting energy index. A large value of parameter A means more elastic strain energy before the peak strength while a small value indicates most of input energy was dissipated. Finally, the coal burst proneness of these two coal mines was evaluated with the modified index. The results of modified index are consistent with that of laboratory tests, and more reasonable than that from original bursting energy index because it removed the dissipated strain energy from the total input strain energy density.
Funder
Natural Science Foundation of Hubei Province
China Scholarship Council
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献