Analysis and Design of Three-Phase Buck Rectifier Employing UPS to Supply High Reliable DC Power

Author:

Lee Jun-Young,Heo Kyung-Wook,Kim Kyu-Tae,Jung Jee-HoonORCID

Abstract

In the DC distribution system, to step down the DC voltage level from the AC grid voltage, the conventional topologies require multiple power conversion stages and bulky line-frequency transformers, which degrade their power density and cost-effectiveness. In addition, the conventional topologies suffer from a shoot-through problem resulting in their low system reliability. In this paper, to overcome the above issues, systematic design approaches of a three-phase buck rectifier with an uninterruptible power supply (UPS) and a protection algorithm are proposed to obtain the high reliability of the DC distribution system, which can deal with fault conditions and can regulate the output voltage level. It only requires a single stage of the three-phase buck rectifier. Also, a thyristor switch is added without any commutation circuits to cut off the output from the fault circuit. The shoot-through faults do not occur in the buck rectifier, leading to high reliability. A dual-active-bridge (DAB) DC-DC converter is applied as the UPS to supply the electric power from the battery when the buck rectifier is shut down under the fault conditions. Finally, the protection algorithm is proposed to detect the fault conditions and to regulate the output voltage level.

Funder

Samsung Electronics

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3