An Energy Graph-Based Approach to Fault Diagnosis of a Transcritical CO2 Heat Pump

Author:

Uren Kenneth R.ORCID,van Schoor GeorgeORCID,van Eldik MartinORCID,de Bruin Johannes J. A.ORCID

Abstract

The objective of this paper is to describe an energy-based approach to visualize, identify, and monitor faults that may occur in a water-to-water transcritical CO 2 heat pump system. A representation using energy attributes allows the abstraction of all physical phenomena present during operation into a compact and easily interpretable form. The use of a linear graph representation, with heat pump components represented as nodes and energy interactions as links, is investigated. Node signature matrices are used to present the energy information in a compact mathematical form. The resulting node signature matrix is referred to as an attributed graph and is populated in such a way as to retain the structural information, i.e., where the attribute points to in the physical system. To generate the energy and exergy information for the compilation of the attributed graphs, a descriptive thermal–fluid model of the heat pump system is developed. The thermal–fluid model is based on the specifications of and validated to the actual behavioral characteristics of a physical transcritical CO 2 heat pump test facility. As a first step to graph-matching, cost matrices are generated to represent a characteristic residual between a normal system node signature matrix and a faulty system node signature matrix. The variation in the eigenvalues and eigenvectors of the characteristic cost matrices from normal conditions to a fault condition was used for fault characterization. Three faults, namely refrigerant leakage, compressor failure and gas cooler fouling, were considered. The paper only aims to introduce an approach, with the scope limited to illustration at one operating point and considers only three relatively large faults. The results of the proposed method show promise and warrant further work to evaluate its sensitivity and robustness for small faults.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference48 articles.

1. Fault Diagnosis for Heat Pump Systems;Zogg,2002

2. Feldanalyse von WP-Anlagen;Erb,2000

3. Comprehensive Diagnostic and Improvement Tools for HVAC-System Installations in Light Commercial Buildings https://www.proctoreng.com/dnld/Comprehensive_Diagnostic_and_Improvement_Tools_000.pdf

4. Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3