Resource Recovery from Waste Coffee Grounds Using Ultrasonic-Assisted Technology for Bioenergy Production

Author:

Mofijur M.,Kusumo F.,Fattah I. M. RizwanulORCID,Mahmudul H. M.,Rasul M. G.,Shamsuddin A. H.,Mahlia T. M. I.ORCID

Abstract

Biodiesel is a proven alternative fuel that can serve as a substitute for petroleum diesel due to its renewability, non-toxicity, sulphur-free nature and superior lubricity. Waste-based non-edible oils are studied as potential biodiesel feedstocks owing to the focus on the valorisation of waste products. Instead of being treated as municipal waste, waste coffee grounds (WCG) can be utilised for oil extraction, thereby recovering an energy source in the form of biodiesel. This study evaluates oil extraction from WCG using ultrasonic and Soxhlet techniques, followed by biodiesel conversion using an ultrasonic-assisted transesterification process. It was found that n-hexane was the most effective solvent for the oil extraction process and ultrasonic-assisted technology offers a 13.5% higher yield compared to the conventional Soxhlet extraction process. Solid-to-solvent ratio and extraction time of the oil extraction process from the dried waste coffee grounds (DWCG) after the brewing process was optimised using the response surface methodology (RSM). The results showed that predicted yield of 17.75 wt. % of coffee oil can be obtained using 1:30 w/v of the mass ratio of DWCG-ton-hexane and 34 min of extraction time when 32% amplitude was used. The model was verified by the experiment where 17.23 wt. % yield of coffee oil was achieved when the extraction process was carried out under optimal conditions. The infrared absorption spectrum analysis of WCG oil determined suitable functional groups for biodiesel conversion which was further treated using an ultrasonic-assisted transesterification process to successfully convert to biodiesel.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3