Efficient Object Detection Framework and Hardware Architecture for Remote Sensing Images

Author:

Li ,Zhang ,Wu

Abstract

Object detection in remote sensing images on a satellite or aircraft has important economic and military significance and is full of challenges. This task requires not only accurate and efficient algorithms, but also highperformance and low power hardware architecture. However, existing deep learning based object detection algorithms require further optimization in small objects detection, reduced computational complexity and parameter size. Meanwhile, the generalpurpose processor cannot achieve better power efficiency, and the previous design of deep learning processor has still potential for mining parallelism. To address these issues, we propose an efficient contextbased feature fusion single shot multibox detector (CBFFSSD) framework, using lightweight MobileNet as the backbone network to reduce parameters and computational complexity, adding feature fusion units and detecting feature maps to enhance the recognition of small objects and improve detection accuracy. Based on the analysis and optimization of the calculation of each layer in the algorithm, we propose efficient hardware architecture of deep learning processor with multiple neural processing units (NPUs) composed of 2D processing elements (PEs), which can simultaneously calculate multiple output feature maps. The parallel architecture, hierarchical onchip storage organization, and the local register are used to achieve parallel processing, sharing and reuse of data, and make the calculation of processor more efficient. Extensive experiments and comprehensive evaluations on the public NWPU VHR10 dataset and comparisons with some stateoftheart approaches demonstrate the effectiveness and superiority of the proposed framework. Moreover, for evaluating the performance of proposed hardware architecture, we implement it on Xilinx XC7Z100 field programmable gate array (FPGA) and test on the proposed CBFFSSD and VGG16 models. Experimental results show that our processor are more power efficient than general purpose central processing units (CPUs) and graphics processing units (GPUs), and have better performance density than other stateoftheart FPGAbased designs.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3