Abstract
Solar maps are becoming a popular resource and are available via the web to help plan investments for the benefits of renewable energy. These maps are especially useful when the results have high accuracy. LiDAR technology currently offers high-resolution data sources that are very suitable for obtaining an urban 3D geometry with high precision. Three-dimensional visualization also offers a more accurate and intuitive perspective of reality than 2D maps. This paper presents a new method for the calculation and visualization of the solar potential of building roofs on an urban 3D model, based on LiDAR data. The paper describes the proposed methodology to (1) calculate the solar potential, (2) generate an urban 3D model, (3) semantize the urban 3D model with different existing and calculated data, and (4) visualize the urban 3D model in a 3D web environment. The urban 3D model is based on the CityGML standard, which offers the ability to consistently combine geometry and semantics and enable the integration of different levels (building and city) in a continuous model. The paper presents the workflow and results of application to the city of Vitoria-Gasteiz in Spain. This paper also shows the potential use of LiDAR data in different domains that can be connected using different technologies and different scales.
Subject
General Earth and Planetary Sciences
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献