Using Neural Network to Identify the Severity of Wheat Fusarium Head Blight in the Field Environment

Author:

Zhang Dongyan,Wang DaoyongORCID,Gu Chunyan,Jin Ning,Zhao Haitao,Chen Gao,Liang Hongyi,Liang Dong

Abstract

Fusarium head blight (FHB), one of the most important diseases of wheat, mainly occurs in the ear. Given that the severity of the disease cannot be accurately identified, the cost of pesticide application increases every year, and the agricultural ecological environment is also polluted. In this study, a neural network (NN) method was proposed based on the red-green-blue (RGB) image to segment wheat ear and disease spot in the field environment, and then to determine the disease grade. Firstly, a segmentation dataset of single wheat ear was constructed to provide a benchmark for the segmentation of the wheat ear. Secondly, a segmentation model of single wheat ear based on the fully convolutional network (FCN) was established to effectively realize the segmentation of the wheat ear in the field environment. An FHB segmentation algorithm was proposed based on a pulse-coupled neural network (PCNN) with K-means clustering of the improved artificial bee colony (IABC) to segment the diseased spot of wheat ear by automatic optimization of PCNN parameters. Finally, the disease grade was calculated using the ratio of the disease spot to the whole wheat ear. The experimental results show that: (1) the accuracy of the segmentation model for single wheat ear constructed in this study is 0.981. The segmentation time is less than 1 s, indicating that the model can quickly and accurately segment wheat ear in the field environment; (2) the segmentation method of the disease spot performed under each evaluation indicator is improved compared with the traditional segmentation methods, and the accuracy is 0.925 in the disease severity identification. These research results can provide important reference value for grading wheat FHB in the field environment, which also can be beneficial for real-time monitoring of other crops’ diseases under near-Earth remote sensing.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference51 articles.

1. Assessment of Fusarium and Deoxynivalenol Using Optical Methods

2. Plant Diseases, Pests and Food Security;Mcbeath;Springer Neth.,2010

3. Metabolic Biomarker Panels of Response to Fusarium Head Blight Infection in Different Wheat Varieties;Miroslava;PLoS ONE,2016

4. Pesticide and Environment;Yuan;Shanghai Chemcai Industry.,2000

5. Remote sensing of rice crop areas

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3