Sub-Daily Temperature Heterogeneity in a Side Channel and the Influence on Habitat Suitability of Freshwater Fish

Author:

Collas Frank P.L.,van Iersel Wimala K.ORCID,Straatsma Menno W.ORCID,Buijse Anthonie D.ORCID,Leuven Rob S.E.W.

Abstract

Rising surface water temperatures in fluvial systems increasingly affect biodiversity negatively in riverine ecosystems, and a more frequent exceedance of thermal tolerance levels of species is expected to impoverish local species assemblages. Reliable prediction of the effect of increasing water temperature on habitat suitability requires detailed temperature measurements over time. We assessed (1) the accuracy of high-resolution images of water temperature of a side channel in a river floodplain acquired using a consumer-grade thermal camera mounted on an unmanned airborne vehicle (UAV), and (2) the associated habitat suitability for native and alien fish assemblages. Water surface temperatures were mapped four times throughout a hot summer day and calibrated with 24 in-situ temperature loggers in the water at 0.1 m below the surface using linear regression. The calibrated thermal imagery was used to calculate the potentially occurring fraction (POF) of freshwater fish using species sensitivity distributions. We found high temperatures (25–30 °C) in the side channel during mid-day resulting in reduced habitat suitability. The accuracy of water temperature estimates based on the RMSE was 0.53 °C over all flights (R2 = 0.94). Average daily POF was 0.51 and 0.64 for native and alien fish species in the side channel. The error of the POF estimates is 76% lower when water temperature is estimated with thermal UAV imagery compared to temperatures measured at an upstream gauging station. Accurately quantifying water temperature and the heterogeneity thereof is a critical step in adaptation of riverine ecosystems to climate change. Our results show that measurements of surface water temperature can be made accurately and easily using thermal imagery from UAVs allowing for an improved habitat management, but coincident collection of long wave radiation is needed for a more physically-based prediction of water temperature. Because of climate change, management of riverine ecosystems should consider thermal pollution control and facilitate cold water refugia and connectivity between waterbodies in floodplains and the cooler main channel for fish migration during extremely hot summer periods.

Funder

Stichting voor de Technische Wetenschappen

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3