Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth

Author:

Meyer ThomasORCID,Jagdhuber ThomasORCID,Piles MaríaORCID,Fink Anita,Grant Jennifer,Vereecken HarryORCID,Jonard FrançoisORCID

Abstract

A considerable amount of water is stored in vegetation, especially in regions with high precipitation rates. Knowledge of the vegetation water status is essential to monitor changes in ecosystem health and to assess the vegetation influence on the water budget. In this study, we develop and validate an approach to estimate the gravimetric vegetation water content (mg), defined as the amount of water [kg] per wet biomass [kg], based on the attenuation of microwave radiation through vegetation. mg is expected to be more closely related to the actual water status of a plant than the area-based vegetation water content (VWC), which expresses the amount of water [kg] per unit area [m2]. We conducted the study at the field scale over an entire growth cycle of a winter wheat field. Tower-based L-band microwave measurements together with in situ measurements of vegetation properties (i.e., vegetation height, and mg for validation) were performed. The results indicated a strong agreement between the in situ measured and retrieved mg (R2 of 0.89), with mean and standard deviation (STD) values of 0.55 and 0.26 for the in situ measured mg and 0.57 and 0.19 for the retrieved mg, respectively. Phenological changes in crop water content were captured, with the highest values of mg obtained during the growth phase of the vegetation (i.e., when the water content of the plants and the biomass were increasing) and the lowest values when the vegetation turned fully senescent (i.e., when the water content of the plant was the lowest). Comparing in situ measured mg and VWC, we found their highest agreement with an R2 of 0.95 after flowering (i.e., when the vegetation started to lose water) and their main differences with an R2 of 0.21 during the vegetative growth of the wheat vegetation (i.e., where the mg was constant and VWC increased due to structural changes in vegetation). In addition, we performed a sensitivity analysis on the vegetation volume fraction (δ), an input parameter to the proposed approach which represents the volume percentage of solid plant material in air. This δ-parameter is shown to have a distinct impact on the thermal emission at L-band, but keeping δ constant during the growth cycle of the winter wheat appeared to be valid for these mg retrievals.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vegetation moisture estimation in the Western United States using radiometer-radar-lidar synergy;Remote Sensing of Environment;2024-03

2. Estimation of Gravimetric Vegetation Moisture in the Western United States Using a Multi-Sensor Approach;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

3. Estimation Of Gravimetric Vegetation Moisture In The Western United States Using A Multi-Sensor Approach;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

4. HESS Opinions: Participatory Digital eARth Twin Hydrology systems (DARTHs) for everyone – a blueprint for hydrologists;Hydrology and Earth System Sciences;2022-09-29

5. Satellite-Based Monitoring of Ecosystem Level Drought Using Vegetation Optical Depth and Sun-Induced Chlorophyll Fluorescence;IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium;2022-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3