Role of Surface Melt and Icing Events in Livestock Mortality across Mongolia’s Semi-Arid Landscape

Author:

Pan Caleb G.ORCID,Kimball John S.,Munkhjargal MunkhdavaaORCID,Robinson Nathaniel P.,Tijdeman Erik,Menzel LucasORCID,Kirchner Peter B.ORCID

Abstract

Livestock production is a socioeconomic linchpin in Mongolia and is affected by large-scale livestock die-offs. Colloquially known as dzuds, these die-offs are driven by anomalous climatic events, including extreme cold temperatures, extended snow cover duration (SCD) and drought. As average temperatures across Mongolia have increased at roughly twice the global rate, we hypothesized that increasing cold season surface melt including soil freeze/thaw (FT), snowmelt, and icing events associated with regional warming have become increasingly important drivers of dzud events as they can reduce pasture productivity and inhibit access to grazing. Here, we use daily brightness temperature (Tb) observations to identify anomalous surface melt and icing events across Mongolia from 2003–2016 and their contribution to dzuds relative to other climatic drivers, including winter temperatures, SCD, and drought. We find a positive relationship between surface melt and icing events and livestock mortality during the fall in southern Mongolia and during the spring in the central and western regions. Further, anomalous seasonal surface melt and icing events explain 17–34% of the total variance in annual livestock mortality, with cold temperatures as the leading contributor of dzuds (20–37%). Summer drought showed the greatest explanatory power (43%) but overall had less statistically significant relationships relative to winter temperatures. Our results indicate that surface melt and icing events will become an increasingly important driver of dzuds as annual temperatures and livestock populations are projected to increase in Mongolia.

Funder

National Aeronautics and Space Administration

Fulbright

German Academic Exchange

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3