Evaluation of Wood Anatomical Properties from 18 Tree Species in the Subtropical Region of China

Author:

Wang Yunpeng1ORCID,Wang Yiping2,Shen Le1,Wu Zhaoxiang1,Li Huihu1,Hu Miao1,Liu Qiaoli1,Chen Caihui1,Hu Xiaokang3,Zhong Yongda1ORCID

Affiliation:

1. Engineering Research Center of Genetic Improvement and Cultivation of Native Precious Broad-Leaved Tree Species of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China

2. Gannan Arboretum, Ganzhou 341299, China

3. Ganzhou Institute of Forestry, Ganzhou 341212, China

Abstract

The subtropical region of China possesses abundant broad-leaf tree species resources; however, the anatomical properties and microstructure of the wood are still unclear, which restricts the processing and utilization of wood. In this study, 14 broad-leaf trees and four coniferous trees were selected. Wood anatomical indices and wood microanatomy were used to evaluate the wood properties using a comprehensive index method. The results have shown that Dalbergia assamica exhibited the highest wood basic density among the 14 broad-leaved tree species, accompanied by a significant fiber proportion and vessel lumen diameter but a small vessel proportion and a high number of wood rays. Conversely, Parakmeria lotungensis and Michelia chapensis had relatively low wood basic densities, rendering them less suitable as valuable broad-leaved wood sources. Altingia chinensis, Castanopsis kawakamii, and the remaining 11 tree species exhibited medium-level wood basic densities. The 14 broad-leaved tree species had medium-length fibers. Phoebe bournei, Dalbergia assamica, and Castanopsis kawakamii demonstrated relatively high fiber proportion. Altingia chinensis, Dalbergia assamica, and Castanopsis kawakamii exhibited a large number of wood rays, making their wood more susceptible to cracking, whereas other broad-leaved tree species possessed fewer wood rays. The findings have provided a scientific basis for the exploration of precious broad-leaved tree resources and wood use.

Funder

Key Industrial Technology Research Project of Jiangxi Academy of Sciences

Key Research and Development Plan Project of Provincial-Level Scientific Research Project Funding Overall Contract System Pilot Demonstration Project of Jiangxi Academy of Sciences

Scientific Research Funding of Provincial Talent Training of Jiangxi Academy of Sciences

National Government Guidance Fund for Regional Science and Technology Development

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3