Groundwater Hydraulics in Increased Spring Discharge following Earthquakes: Some Applications and Considerations

Author:

Sanz Pérez Eugenio1ORCID,Mosquera-Feijóo Juan Carlos1ORCID,de Ojeda Joaquín Sanz1,Rodrigo Pablo Rosas1

Affiliation:

1. ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain

Abstract

Earthquakes often entail alterations in the groundwater flow regime, in the phreatic level, surges and losses of springs, and the discharge in brooks. A variety of theoretical approaches attempt to elucidate the post-earthquake effects on spring discharge. This study adopts a conceptual approach, primarily presenting diverse methods to estimate water released by earthquakes involving calculations of discharge surpluses in springs. This study delves into refined techniques rooted in groundwater hydraulics, displaying applications of analytical and simulation methodologies to quantify earthquake-induced groundwater discharge in springs. This research investigates springs as natural indicators and applies mathematical precipitation–runoff models, particularly the CREC model, to simulate hydrographs in post-earthquake scenarios. We apply analytical procedures or mathematical simulation techniques employed in groundwater hydraulics for natural aquifer recharge calculations. Firstly, we briefly describe the methods based on the analysis of depletion curves of hydrographs in spring discharge. Additionally, specific mathematical rainfall–runoff models used to simulate hydrographs of karstic springs, along with derived analytical approximations, are adapted for this scenario. These hydraulic calculations involve the depletion coefficient and hydrodynamic volumes of aquifers, parameters that reveal certain aspects of the relation between groundwater and earthquakes. Three main features are: (a) Acknowledging faults as the primary geological structures in transmitting pore pressures due to earthquakes. Thus, for large and deep faults, which connect the ground surface with the Earth’s crust bottom—where earthquakes trigger—the depletion coefficient, α, usually reaches high values (α = 0.1 days−1). Therefore, these faults become more sensitive to pore pressure than other lithologies. (b) Elucidating the mechanisms of permeability enhancement caused by earthquakes. (c) Highlighting the substantial volumes in motion within the Earth’s interior, which, for instance, could constitute a significant source for the origin of mineral deposits. Mathematical calculations enable the determination of the volume of mobilized water that can be discharged by gravity in each earthquake. This, along with its recurrence, justifies the substantial mineralization volumes.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3