Investigation of Cutting Force in Longitudinal-Torsional Ultrasonic-Assisted Milling of Ti-6Al-4V

Author:

Niu ,Jiao ,Zhao ,Gao

Abstract

In this study, we propose a longitudinal-torsion ultrasonic-assisted milling (LTUM) machining method for difficult-to-cut materials—such as titanium alloy—in order to realize anti-fatigue manufacturing. In addition, a theoretical prediction model of cutting force is established. To achieve this, we used the cutting edge trajectory of LTUM to reveal the difference in trajectory between LTUM and traditional milling (TM). Then, an undeformed chip thickness (UCT) model of LTUM was constructed. From this, the cutting force model was able to be established. A series of experiments were subsequently carried out to verify this LTUM cutting force model. Based on the established model, the influence of several parameters on cutting force was analyzed. The results showed that the established theoretical model of cutting force was in agreement with the experimental results, and that, compared to TM, the cutting force was lower in LTUM. Specifically, the cutting force in the feed direction, Fx, decreased by 24.8%, while the cutting force in the width of cut direction Fy, decreased by 29.9%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3