Expandable Layered Hybrid Materials Based on Individual 1D Metalorganic Nanoribbons

Author:

Moreno Jose,Velty Alexandra,Diaz Urbano

Abstract

Different metalorganic lamellar hybrid materials based on associated nanoribbons were synthesized by the use of alkyl–benzyl monocarboxylate spacers, containing alkyl tails with variable lengths, which acted like structural growing inhibitors. These molecular agents were perpendicularly located and coordinated to aluminium nodes in the interlayer space, controlling the separation between individual structure sub-units. The hybrid materials were studied by X-ray diffraction (XRD), chemical and thermogravimetrical analysis (TGA), nuclear magnetic resonance (NMR) and infrared spectroscopy (IR), and field emission scanning electron microscopy (FESEM)/transmission electron microscopy (TEM), showing their physicochemical properties. The specific capacity of the metalorganic materials to be exfoliated through post-synthesis treatments, using several solvents due to the presence of 1D structure sub-units and a marked hydrophobic nature, was also evidenced.

Funder

MULTI2HYCAT EU-Horizon 2020

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3