Abstract
In this study, a novel laser-modified drilling method was used to manufacture cooling holes through thermal barrier coatings (TBCs). Due to the “cooling processing” properties during low-frequency femtosecond (LF-fs) laser drilling, the exposure of the sidewall pores, and the interlayer clearance, the inherent characteristics of plasma-sprayed coatings induced sidewall defects in the drilled holes. After drilling, a high-frequency fs (HF-fs) laser was used to repair the sidewall pores and interlayer clearance of the drilled ceramic holes. Then, the pores and microcracks were healed by local melting using the laser. Moreover, instead of obtaining laser-induced periodic surface structures (LIPSSs), refined and homogeneous grains were produced by the HF-fs laser repair treatment at high transient pressure and temperature. The results from a high-temperature corrosion test showed that healing of the open pores and microstructural improvement in the ceramic hole walls prevented the out-diffusion of Y2O3 stabilizers and the penetration of molten salt, resulting in less corrosive products and producing corresponding phase-transformation stress. Thus, reducing the stabilizer consumption can moderate corrosion fatigue and prolong the lifetime of a cooling hole and TBCs under service.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献