Novel Synthesis of Nitrogen-Containing Bio-Phenol Resin and Its Molten Salt Activation of Porous Carbon for Supercapacitor Electrode

Author:

Ai Tao,Wang Zhe,Zhang Haoran,Hong Fenghua,Yan Xin,Su Xinhua

Abstract

Nitrogen hybridization is an attractive way to enhance the wettability and electric conductivity of porous carbon, which increases the capacitance of carbon-based supercapacitor, however, there is lack of low-cost methods to prepare the nitrogen-doped porous carbon materials. Herein, a novel facile nitrogen-containing bio-phenolic resin was synthesized by polymerization of the carbamate bio-oil, Phenol and paraformaldehyde. As a precursor of nitrogen-doped porous carbon, the nitrogen-containing bio-phenol resin was activated by the one-step molten-salt method. The resultant nitrogen-doped porous carbon showed a high specific surface area up to 1401 m2·g−1. As a supercapacitor electrode, the nitrogen-doped porous carbons showed specific capacitance of 159 F·g−1 at 0.5 A·g−1. It also exhibited high cyclic stability with 94.8% retention of the initial specific capacitance over 1000 charge-discharge cycles at 1.0 A·g−1. The results suggest that these nitrogen-containing bio-phenol resin provide a new source of nitrogen-doped porous carbon for high-performance supercapacitor electrodes.

Funder

International Project on Scientific and Technological Cooperation in Shaanxi Province of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3