Interannual and Seasonal Shift between Microcystis and Dolichospermum: A 7-Year Investigation in Lake Chaohu, China

Author:

Zhang Min,Yang Zhen,Yu Yang,Shi Xiaoli

Abstract

The shifts among bloom-forming cyanobacteria have attracted increasing attention due to the reductions in nitrogen and phosphorus during the eutrophication mitigation process. However, knowledge is limited regarding the pattern and drivers of the shifts among these cyanobacterial genera. In this study, we performed a 7-year long, monthly investigation in Lake Chaohu, to analyze the interannual and seasonal shifts between Microcystis and Dolichospermum. Our results showed that Microcystis was the dominant cyanobacterium in the western lake region in summer, whereas Dolichospermum was dominant in the other regions and seasons. The Microcystis biomass and ratio were driven primarily by total phosphorus and temperature. The sensitivity of Dolichospermum to nutrients and temperature was relatively weak compared to that of Microcystis. The shifts between Microcystis and Dolichospermum might be led by Microcystis. If the temperature and phosphorus level were relatively high, then Microcystis grew rapidly, and competitively excluded Dolichospermum. If the nutrient level, especially the phosphorus level, was low, then the exclusive power of Microcystis was weak, and Dolichospermum maintained its dominance, even in summer. The key temperature (~17 °C) determined the dominance of the two cyanobacteria. Microcystis never dominated, while Dolichospermum was always dominant below the key temperature. Microcystis and Dolichospermum had different means of responding to the interaction of temperature, nitrogen and phosphorus. The Dolichospermum biomass was sensitive to the variation in nitrogen level, and the sensitivity depended on temperature. While the Microcystis biomass was sensitive to the variation in phosphorus level, and the sensitivity depended on temperature and total nitrogen. The different ways might contribute to the succession of the two cyanobacteria. Our findings will be helpful for improving the understanding of the shift process between Microcystis and Dolichospermum.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference43 articles.

1. The Ecology of Cyanobacteria: Their Diversity in Time and Space;Whitton,2000

2. Ecology of Harmful Cyanobacteria;Paerl,2006

3. Cyanobacterial water-blooms;Reynolds,1987

4. Analysis of environmental drivers influencing interspecific variations and associations among bloom-forming cyanobacteria in large, shallow eutrophic lakes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3