Author:
Hu Chao,Cheng Rui,Cheng Qilin,Liu Jichun
Abstract
Bamboo structures have various types of connections, such as bolting and lashing. One crucial issue in bamboo structures is that the connection with bolts and nails has a lower load-carrying capacity associated with the bamboo failure resulting from the bolt or nail invading them. This paper focuses on the connection for raw bamboo members with steel hoops (BHC), of which the two semi-circular steel hoops are fastened to the raw bamboo with high-strength bolts. The sliding friction is controlled by the interfacial pressure, which can be increased by tightening the bolts. A push-out experiment on thirty-six specimens was conducted considering the following two parameters: the different surface conditions of raw bamboo (with or without the epidermis) and the different interfacial pressure. The test results mainly showed the two failure modes of specimens under certain conditions: continuous longitudinal slip after the vertical load reached the peak; and the steel hoop stuck in the bamboo skin after a period of slip. It is found that the sliding friction was controlled by the interfacial pressure, and the difference in the anti-sliding capacity between the epidermal bamboo specimen and the non-epidermal bamboo specimen was magnified with the increase of interfacial pressure. The contact stress on the surface of bamboo is approximately uniformly distributed based on the finite element analyses. The interfacial pressure can be predicted by the torque value of the digital electronic torque wrench and the equations established by mechanical analysis, respectively. Moreover, the design formulae of bearing capacity for BHC under three guaranteed rates (50%, 95%, and 99.9%) were developed based on probability theory, while the fourth design formula was derived by regression analysis. The reliability indices of the four design formulae were up to 0.07, 1.44, 3.09, and 0.97, respectively, and the resistance partial coefficients were suggested accordingly.
Funder
National Key Research and Development Program of China
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献